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Abstract
In this paper, the performance of the recently proposed adaptive
signal models on modeling speech voiceless stop sounds is
presented. Stop sounds are transient parts of speech that
are highly non-stationary in time. State-of-the-art sinusoidal
models fail to model them accurately and efficiently, thus
introducing an artifact known as the pre-echo effect. The
adaptive QHM and the extended adaptive QHM (eaQHM)
are tested to confront this effect and it is shown that highly
accurate, pre-echo-free representations of stop sounds are
possible using adaptive schemes. Results on a large database
of voiceless stops show that, on average, eaQHM improves
by 100% the Signal to Reconstruction Error Ratio (SRER)
obtained by the standard sinusoidal model.

Index Terms: Extended adaptive Quasi-Harmonic Model, Stop
sounds, Speech analysis, Sinusoidal Modeling, Pre-echo effect

1. Introduction
Sinusoidal models have long been in the heart of many state-of-
the-art systems that deal with speech and audio waveform rep-
resentation, due to their capability of accurately modeling the
quasi-periodic phenomena that typically occur in such wave-
forms. In the most generic case, a combination of sinusoids and
a noise term provide a high-quality representation of a given
audio signal.

Many variations of sinusoidal models have been suggested
for speech and audio. Among them, the sinusoidal model of
McAulay and Quatieri [1], the deterministic plus stochastic
model suggested by Serra, mainly for audio synthesis and mod-
ifications [2], and the Harmonic plus Noise Model (HNM) for
speech synthesis, modifications and voice conversion [3]. How-
ever, all these approaches suffer from a common artifact, the
so-called pre-echo effect, which in speech is due to the local
high non-stationarity of sudden attack transients or stop sounds
(called stops for the rest of the paper), such as the voiceless plo-
sives /t/, /k/, and /p/. As it can be easily observed, stops are
signals in which silence (occlusion or blocked airflow) is fol-
lowed by a sharp attack (release burst). It is worth noting that
all languages have plosives. Signals with such properties are
not only present in speech but also in music; one can think of a
sudden play of castanets, cymbals, or drums.

It has long been known that sinusoidal modeling is ineffi-
cient to model stops well, since they are broadband signals and
have noise-like frequency domain structure [4]. Although sinu-
soidal models have been successfully applied for non-voiced
speech, the nature of stops makes their modeling by a sum

of stationary sinusoids inappropriate, because of the sudden
change in amplitude during the release burst. An attempt to
model the voiceless stops with a finite number of stationary si-
nusoids (i.e., one sinusoid every 80 − 100 Hz) will manifest
the Gibbs phenomenon just before the release time instant (pre-
echo effect). This leads to an audible release energy smearing
and therefore to a reconstructed signal with reduced intelligi-
bility compared to the original signal. One could argue that
an effort to model stops with a certain high amount of sinusoids
would suffice; however, this is proved to be both insufficient and
costly, since it requires a transient detection algorithm [5][6]
and some proper handling (i.e., transform coding [5] [7]). The
use of short analysis windows when stop sounds are detected
as in [5], does not alleviate the pre-echo effect as it will be
also shown here. Other techniques such as multiresolutional
sinusoidal analysis have failed to eliminate or alleviate the pre-
echo effect [5]. Because of the aforementioned problems, copy
strategies or transform coding are mostly used over the short
time region of the attack onset in speech and audio synthesis
state-of-the-art systems.

In this paper, a recently suggested AM-FM decomposition
algorithm, referred to as the adaptive Quasi-Harmonic Model
(aQHM) [8], and its extension, the extended adaptive Quasi-
Harmonic Model (eaQHM) [9] (jointly referred to as the adap-
tive models for the rest of the paper), are applied on the prob-
lem of modeling voiceless stops. These models differ from typ-
ical sinusoidal models in the fact that the signal is projected
onto non-stationary amplitude and phase basis functions. It has
been shown that these models can adapt to the analyzed signal
better than typical sinusoidal representations, therefore achiev-
ing high reconstruction quality, as measured by the Signal-to-
Reconstruction-Error Ratio (SRER) [8] [9]. However, SRER is
commonly used as a global signal measure and thus small but
pre-echo-related modeling errors at the abrupt part of the recon-
structed signal may be buried into the global modeling error. So,
additionally, a local SRER will be used in order to reveal the
efficiency of the reconstruction around the pre-echo area. Ex-
periments show that the adaptive models provide a nearly pre-
echo-free representation of stop sounds, without the necessity
of using very short analysis window lengths for these sounds,
neither the use of a transient detector as in [5]. Also, it is shown
that for the adaptive sinusoidal models the overall quality in
modeling stops is high in terms of SRER.

The rest of the paper is organized as follows. In Section 2,
we will quickly review the adaptive models. Section 3 presents
a voiceless stop signal as a case study and the limitations of
classic sinusoidal modeling versus adaptive modeling are re-
vealed. Section 4 compares three sinusoidal-based speech rep-



resentations (standard sinusoidal model [1] with two adaptive
sinusoidal models [8] [9]) in modeling voiceless stops using a
large speech database. Finally, Section 5 concludes the paper.

2. Overview of the Adaptive Sinusoidal
Models

In the core of the adaptive sinusoidal models lies the Quasi-
Harmonic Model (QHM) [10]. QHM is defined as:

x(t) =

(
K∑

k=1

(ak + tbk)e
j2πf̂kt

)
w(t), t ∈ [−Tl, Tl] (1)

where ak denotes the complex amplitude, bk denotes the com-
plex slope of the kth component, and 2Tl is the length of the
analysis window. The estimated frequencies are denoted here
by f̂k, while

ηk = fk − f̂k (2)

is the frequency mismatch between the true, fk, and the esti-
mated f̂k frequency of the kth component. In the standard si-
nusoidal model, the error ηk leads to the underestimation of
amplitudes ak. The lower the pitch frequency, the more audible
(i.e., sometimes referred to as loss of presence) the underesti-
mation of amplitudes is. In [10], it was shown that QHM is able
to provide an estimate of ηk, which is:

η̂k =
1

2π

aR
k b

I
k − aI

kb
R
k

|ak|2
, (3)

where aR
k , bRk and aI

k, bIk are the real and imaginary parts of
ak and bk, respectively. Details on the derivation can be found
in [10].

QHM is therefore a very good frequency estimator but
still uses a sum of stationary sinusoids for representing speech.
Therefore, the non-stationary parts of speech (i.e, transitions)
cannot be well presented by QHM. To this direction, an adap-
tive QHM model has been suggested, referred to as the extended
adaptive QHM (eaQHM) [9]:

x(t) =

(
Kl∑
k=1

(ak + tbk)αk(t)e
j(ϕ̂k(t+tl)−ϕ̂k(tl))

)
w(t),

(4)
where t ∈ [−Tl, Tl], αk(t) = Âk(t+tl)

Âk(tl)
denotes the amplitude

adaptation term of the kth component, Âk(t) denotes the in-
stantaneous amplitude of the kth component, ϕ̂k(t) denotes the
instantaneous phase function of the kth component and tl is the
center of the analysis window. As for QHM, the term bk pro-
vides a mechanism to update – correct, in the least squares (LS)
sense – the frequency of the underlying sine wave at the center
of the analysis window, tl. The instantaneous phase of the kth

component in a specific frame l can be computed as

ϕ̂k(t) =

∫ tl+t

tl

2πf̂k(u)du, t ∈ [−Tl, Tl], (5)

where f̂k(t) is the instantaneous frequency trajectory of the
kth component. The estimation of the unknown parameters of
eaQHM is similar to that of QHM:[

â

b̂

]
= (EHWHWE)−1EHWHWs (6)

where a = [a1, · · · , aKl ],b = [b1, · · · , bKl ], matrix E is

defined as E = [E0|E1], and submatrices Ei, i = 0, 1 have
elements given by

(E0)n,k = αk(t)e
j(ϕ̂k(tn+tl)−ϕ̂k(tl)) (7)

and

(E1)n,k = αk(t)tne
j(ϕ̂k(tn+tl)−ϕ̂k(tl)) = tn(E0)n,k, (8)

where tl is again the center of the analysis window, W is the
matrix containing the window values in the diagonal, and s is
the input signal vector. Note that by setting αk(t) = 1, then
eaQHM reduces to aQHM [8]. In [9] , it was shown that the ba-
sis functions are adapted to the local amplitude and phase char-
acteristics of the signal, resulting in an adaptive AM-FM model
of speech. It was also shown that eaQHM can fully address the
highly nonstationary nature of speech, both in its amplitude and
in its phase. Finally, the adaptation algorithm is presented next.

In eaQHM, an initialization step is required, so QHM is
used for this purpose:

f̂0
k (tl) = f̂0

k (tl−1) + η̂k (9)

Â0
k(tl) = |al

k|, ϕ̂0
k(tl) = ∠al

k (10)

where tl is the center of the lth analysis frame. The AM-FM
decomposition algorithm using eaQHM is given as:

1. Initialization:
Provide initial frequency estimate f0

k (t1)
FOR frame l = 1, 2, · · · , L

(a) Compute al
k, b

l
k using LS

(b) Update f̂0
k (tl) using (9)

(c) Compute Â0
k(tl) and ϕ̂0

k(tl) using (10)
(d) f0

k (tl+1) = f̂0
k (tl)

END
Parameter interpolation: {Â0

k(t), f̂
0
k (t), ϕ̂

0
k(t)}

2. Adaptation of amplitudes and phases:
FOR adaptation i = 1, 2, · · ·

FOR frame l = 1, 2, · · · , L
(a) Compute al

k, b
l
k using ϕ̂i−1

k (t) and (6)
(b) Update f̂ i

k(tl) using (3)
(c) Compute Âi

k(tl) and ϕ̂i
k(tl) using (10)

END
Parameter interpolation: {Âi

k(t), f̂
i
k(t), ϕ̂

i
k(t)}

END

As a last step of the algorithm, the signal can be finally approx-
imated as the sum of its AM-FM components:

x̂(t) =

K∑
k=−K

Âk(t)e
jϕ̂k(t) (11)

The convergence criterion for both models was selected to be
the following:

SRERi−1 − SRERi

SRERi−1
< ϵ (12)

where SRER is the Signal-to-Reconstruction-Error Ratio of
the resynthesized signal, defined as

SRER = 20log10
σx(t)

σx(t)−x̂(t)

(13)

where σx denotes the standard deviation of x(t), x(t) is the
actual signal and x̂(t) is the reconstructed signal. In our exper-
iments, ϵ is set to 0.02.



3. Pre-echo effect and Adaptive Sinusoidal
Modeling

In this section, a comparison between the conventional sinu-
soidal model [1] and the adaptive sinusoidal models on a typi-
cal voiceless stop signal is presented. To this direction, a stop
signal /t/ is extracted from a clear speech recording and is an-
alyzed using the SM and the adaptive models. Since stops are
broadband signals, attention should be paid in setting the pa-
rameters of the models. Both SM and adaptive models perform
well under quasi-periodicity assumption, but this is not the case
of this sound. SM performs peak picking on the spectrum of the
input signal, so it does not need any initial frequency parameter
values. On the other hand, adaptive models solve a least squares
minimization problem, which requires a set of initial frequen-
cies {fk}, (i.e., harmonic frequencies for a voice sound). It is
suggested that for a sampling frequency of Fs = 16 kHz, a
low initial frequency value such as 80 Hz, which results in fre-
quency values of 80k Hz, k = −100, · · · , 100, is enough to
span the frequency spectrum, i.e. it is a full band analysis. The
QHM frequency mismatch correction mechanism will finetune
the frequencies around the maxima of the spectrum, and thus
the highest energy components will be modeled.

For all models, the Hamming window is used and it is set
to 3 times the larger pitch period (1/80 s). A 2048-point FFT is
computed for the analysis frame and a maximum of 100 spec-
tral peaks are allowed for the SM. The number of components
is also set to 100 and five adaptations are allowed at most for
the adaptive models. The frame rate is 1 sample for all models.
Global as well as local SRER measures are computed. Local
SRER focuses only before the release (burst) time and is com-
puted over an interval of Nw

2
samples right before the onset of

the waveform, where Nw is half the analysis window length.
Figure 1 shows the reconstructed signals for each case, with the
aforementioned parameters, while Table 1 shows the global and
local SRER evolution for all models.
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Figure 1: Estimated waveforms for a stop sound. Upper panel:
Original (left) and SM (right) reconstruction. Lower panel:
aQHM (left) and eaQHM (right) reconstruction. The red el-
lipses mark the region where pre-echo occurs.

Based on the performance of the models in terms of local
SRER, it is worth noticing that both adaptive models outper-
form the conventional sinusoidal model. Specifically, eaQHM
performs better than aQHM, and both outperform SM in terms
of reconstruction quality. Comparing the two adaptive sinu-
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Figure 2: Instantaneous amplitude trajectories. Upper panel:
SM amplitude trajectories. Lower panel: amplitude trajectories
for eaQHM (left) and aQHM reconstruction (right). The black
dashed line shows the location of the onset.

Model Global SRER (dB) Local SRER (dB)
SM 6.9 4.1

aQHM 22.4 25.8
eaQHM 32.1 41.6

Table 1: Global and Local Signal to Reconstruction Error Ratio
values (dB) for all models on stop sound /t/.

soidal models, the pre-echo effect is highly reduced for aQHM,
while it is mainly eliminated for eaQHM. Moreover, the results
from the global SRER show that both adaptive models produce
high quality reconstruction of the stop sound compared with
the conventional sinusoidal model. Experiments in manipulat-
ing the window length, the number of components, or both, did
not provide any significant improvement for the SM representa-
tion. Therefore, it seems that the adaptation process is the key
for accurate modeling of stops using long analysis windows.
Figure 2 shows the amplitude trajectories from a series of anal-
ysis frames for aQHM, eaQHM, and SM. It can be seen that
the instantaneous amplitude trajectories for the adaptive mod-
els are more abrupt just before the burst release. Moreover,
it was observed that SM is unable to detect frequency compo-
nents at the pre-echo area because of the stationary basis pro-
jection. This is not the case for the adaptive models, and it can
be justified by the fact that adaptive modeling is a non paramet-
ric representation, taking into account local frequency (and am-
plitude, for eaQHM) variation, which is pertinent for voiceless
stop sounds. As a conclusion, adaptive sinusoidal modeling can
represent highly non-stationary speech segments, like the voice-
less stops, by projecting them on a set of also non-stationary
basis functions that can capture the local characteristics of the
signal. Thus, the pre-echo effect can be highly alleviated and
sometimes eliminated, while a very high reconstruction perfor-
mance is attained.

4. Database Validation
The next step is to strengthen the conclusions of the previous
section using two databases of voiceless stops.

4.1. Small Scale Validation
A small database of French speakers with male and female
speakers is used for our purpose. Different voiceless stops cor-



responding to phonemes /p/, /t/, and /k/ are manually extracted
from clean speech and are analyzed using the conventional sinu-
soidal models and the adaptive models, along with their voiced
counterparts, for comparison purposes. The exact location of
the burst release is manually identified, so as to compute local
SRER accurately. The same metrics and parameters used in the
previous section are also used here, i.e. a frame rate of 1 sam-
ple and an analysis window of 3 pitch periods. The sounds are
categorized into classes of phonemes (20 waveforms for each
class) and Table 2 shows mean value results for both global and
local SRER. Apparently, adaptive modeling maintains its high
SRER levels throughout different types of voiceless stops.

Small Scale Validation
Global Signal to Reconstruction Error Ratio (dB)

Model /p/ /t/ /k/ /b/ /d/ /g/

SM 13.5 14.6 13.4 17.2 15.3 17.6
aQHM 20.8 23.2 23.2 28.9 27.9 28.2
eaQHM 27.1 31.2 28.4 35.5 33.5 33.1

Local Signal to Reconstruction Error Ratio (dB)
Model /p/ /t/ /k/ /b/ /d/ /g/

SM 7.5 4.4 7.2 12.6 12.8 13.1
aQHM 22.2 24.1 24.1 28.8 25.3 28.7
eaQHM 29.0 33.7 29.4 35.7 36.7 35.3

Table 2: Global and Local Signal to Reconstruction Error Ratio
values (dB) for all models on a small database of stops. Voiced
stops are also included in this for comparison purposes.

4.2. Large Scale Validation
A large scale validation is presented here. A large database of
both male and female French speakers is used. Phonetic label-
ing and manual segmentation is available in this database and
thus stops can be easily extracted. In this experiment, 1000
stop sounds are considered. For such an amount of test signals,
the exact burst locations are not available and consequently,
the local SRER is not computed. Moreover, the frame rate of
1 sample used in the previous section, although providing high
SRER values, is time consuming and is not realistic for appli-
cations. Hence, different frame rates are selected, namely 1ms,
2ms, and 4ms. Parameters other than the frame rate remain
the same as in the previous sections. The interpolation schemes
used in this experiment are described in [8] and [1] (i.e., for SM,
linear interpolation between amplitudes and cubic interpolation
between phases). Table 3 presents the results per phoneme, in
terms of mean value of global SRER.

Large Scale Validation
Global Signal to Reconstruction Error Ratio (dB)

Step Model /p/ /t/ /k/ /b/ /d/ /g/

1ms
SM 12.7 12.8 12.4 16.6 14.9 15.3

aQHM 19.9 20.6 21.7 28.3 26.9 27.5
eaQHM 25.4 25.7 27.2 32.9 32.2 32.9

2ms
SM 12.8 12.7 12.3 16.5 15.0 15.4

aQHM 22.2 22.0 21.7 28.0 26.2 28.4
eaQHM 26.1 26.1 26.0 31.7 31.4 34.6

4ms
SM 12.9 12.6 12.2 16.7 15.0 15.3

aQHM 21.0 21.0 20.9 25.5 24.7 25.5
eaQHM 23.7 24.2 24.4 29.4 29.5 30.9

Table 3: Global Signal to Reconstruction Error Ratio values
(dB) for all models on a large database of stops. Voiced stops
are also included in this for comparison purposes. Step denotes
the analysis frame rate.

As it can be observed from Table 3, the performance of
the adaptive models sustains in high reconstruction levels, even
with a frame rate up to 4 ms. The mean standard deviation per
model is: 3 dB (SM), 4 dB (aQHM), and 4.5 dB (eaQHM).
No significant variations in standard deviation were observed
across phonemes. Experiments with higher frame rates, such
as 5 and 10ms, showed an average decrease in performance
of 3 and 7 dB respectively, compared to the 4ms case, for all
models and phonemes. Moreover, at higher frame rates the pre-
echo effect was partially alleviated only for eaQHM modeling.
Therefore it is suggested, as a rule of a thumb, the use of as
low frame rate as possible. The average number of adaptations
required for the convergence criterion in eq.(12) is found to be
4.5 for aQHM and 4.7 for eaQHM, for all step sizes presented
in Table 3.

5. Conclusions
In this paper, modeling of voiceless stop sounds is presented
and addressed via adaptive modeling. The well-known pre-echo
effect of sinusoidal modeling is demonstrated and a solution
is shown to be provided by the extended adaptive QHM. Pre-
echo arises from the inability of sinusoidal models to represent
highly non-stationary short time attacks, typically encountered
in voiceless stop sounds. Using adaptive modeling, the pre-
echo effect is greatly alleviated. The latter is demonstrated an-
alytically using a characteristic example, where the limitations
of sinusoidal modeling are also presented, and is validated on
two different databases of stop sounds. Metrics such as global
SRER for overall modeling and local SRER for a specific focus
on the pre-echo effect are used and confirm the superiority of
adaptive over stationary (conventional) sinusoidal modeling in
representing highly nonstationary parts of speech.
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